
Extended Abstract

Motivation In this project, we aim to improve exploration in PPO. Exploration-exploitation trade-
off is crucial in RL algorithms. Exploration helps in finding pathways to the solutions. Whereas,
exploitation helps the agent to move towards the goal faster. PPO provides entropy bonus as a
mechanism to explore the environment. While this helps the agent to get out of the local minima, it
does not learn diverse solutions. We take a closer look at the entropy and propose a solution to obtain
diverse paths to goal.

Method We first analyze the entropy bonus of the PPO and study its effect on the exploration as
it is weighed. We find that both low and high entropies weights slow down PPO’s solution search.
While the low entropy could not search due to getting stuck in local minima, high entropy incentivizes
PPO to explore a lot before finding a solution. We then study if running PPO longer after finding a
solution helps it in finding newer solutions. While PPO does find new paths to goal, they are only a
perturbation of the initial path that it finds. Upon a closer look at the entropy distribution, we find that
this is due to collapse of the entropy; majority of the states are on low entropy and maximum entropy
is very less. On the contrary, there should be some states with high entropy to encourage exploration.
Therefore, we introduce an inductive bias of exponential distribution over the entropies. According to
our objective, the entropy distribution over the states should be of the form of exponential distribution
and ensure that some states get high entropy. We use moment matching loss between empirical
entropy distribution and exponential distribution.

Implementation We perform our experiments on an obstacle course game. The game environment
contains a spawn block and goal block. The agent has to avoid the obstacle (lava) in the environment
to get to the goal block. Obstacle placement incentivizes multiple paths to the solution. Reward is 10
for reaching the goal and minor positive reward inversly proportional to distance goal. Observation
space is agent’s position, velocity, agent’s distance from obstacles, and flags for agent’s interaction
with the environment. Both policy and value networks have a shared backbone with 2 linear layers.
policy and value heads have a single linear layers.

Results Our experiments show that with the prior of exponential distribution on the entropies,
the diversity of the solutions is qualitatively improved. It could find two starkly different solutions,
compared to a multiple solutions perturbed around one mode, as seen in case of the entropy bonus. We
compare the diversity produced by the entropy bonus vs proposed moment matching with exponential
distribution, and show that our proposed loss performs 194% better relative to the baseline on the
diversity as computed using pairwise DTW distance.

Discussion The results align with the expectation of entropy distribution. As we increase the
number of moments used, we get more diverse solutions. The randomness induced with exponential
distribution is different compared to entropy bonus. While entropy bonus shows completely random
paths, our proposed loss explores multiple directed paths. While the higher entropy values control
randomness, the lower values give direction to the paths. Thus achieving control over exploitation
(directness of path) vs exploration (randomly choosing action). This route of exploration-exploitation
balance is more controlled because the algorithm designer can replace the distribution to achieve
desired trade-off.

Conclusion We investigated into exploratory properties of entropy bonus in PPO. We found that
entropy bonus is helpful in getting out of local minima, but could not find diverse solutions. Our
observation was the policy decreases the entropy close to 0 irrespective entropy bonus. This hinders
the search for diverse solutions, which requires the policy to place high action entropy over a few
number of states. Therefore, we propose the entropy distribution closer to an exponential distribution,
thus ensuring representation for high-entropy states. Our results show the diverse trajectories found
by this entropy objective. As this proposed approach hints towards a exploration-exploitation control
based on distribution, the choice of distribution remains a key design decision requiring domain
knowledge and understanding of the desired entropy distribution against the baseline, as shown in
our environment.
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Abstract

Proximal Policy Optimization (PPO) employs entropy regularization to balance
exploration and exploitation in reinforcement learning environments. However, we
identify a fundamental limitation: while entropy bonuses help agents escape local
minima, they fail to discover diverse solution pathways due to entropy collapse,
where the majority of states exhibit uniformly low entropy values. Through empiri-
cal analysis on navigation tasks with multiple viable solution paths, we demonstrate
that PPO’s entropy distribution becomes highly concentrated near zero, limiting the
agent’s ability to maintain exploratory behavior in regions where diverse strategies
could emerge. To address this limitation, we propose an entropy regularization
scheme that enforces an exponential prior distribution over state-wise entropy
values, ensuring adequate representation of high-entropy states throughout training.
Our approach maintains the benefits of entropy regularization for escaping local
optima while promoting sustained exploration in regions conducive to discovering
alternative solution strategies. Experimental results on obstacle avoidance naviga-
tion tasks show that our method discovers qualitatively distinct solution trajectories,
contrasting with standard PPO which finds only minor perturbations around a
single dominant strategy. This work provides new insights into the role of entropy
distribution in policy optimization and offers a principled approach to enhancing
solution diversity in reinforcement learning.

1 Introduction

Balancing the exploration and exploitation trade-off is crucial in the success of reinforcement learning
algorithms. Reinforcement learning algorithms has the objective to maximize the expected sum of
rewards in an episode. While the original policy gradients approach has this vanilla objective, the
later algorithms proposed multiple improvement over it to reduce the variance in this estimate. These
solutions did not take into account the case of when an agent gets trapped in a local minima. Trying
different actions and exploring becomes the more relevant to alleviate such an issue. Another aspect
of exploration is to find diverse solution strategies to a problem, thus building a set of solutions.

Proximal Policy Optimization Schulman et al. (2017) (PPO) proposes a refined form of policy
gradients objective which is stable and fast to train. It is able to reuse the rollout data collected using
a recent version of the policy. This objective includes a term to reinforce most rewarding actions, an
entropy bonus to encourage exploration of other actions in the action space, and a KL-divergence
term to not to prevent deviation from the rollout policy. While PPO achieves the objective of the
finding a rewarding path to the goal, it is not able to find multiple paths to the goal.

Learning based algorithms, like PPO, prioritize exploitation over exploration. That is, since the
objective of the algorithm is to find the expected case of most rewarding solutions, it is biased to safely
explore. On the contrary, a naive algorithm that purely explores would be random walk where the
agent randomly takes actions at each state, until it reaches the goal state. GoExplore is an intelligent
version of random walk algorithm where they follow a dynamic programming approach to reduce the
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costs associated with repeating simulations at an already seen state and uses heuristics to choose a
state to explore from. But a concern with GoExplore is that it assumes access to the state space of
the environment. This implies that we can spawn the agent from any state in the environment rather
than a fixed spawn state. This assumption helps it to reduce the costs associated with random walk
exploration.

To induce more control over exploration in PPO, we take inspiration from GoExplore that some states
are more worthy to explore from than the others. Our analysis of PPO’s entrotpy bonus suggested
that entropy collapses to values near 0, inspite of entropy bonus. This means the PPO agent’s strategy
is heavily biased to exploitation. To counter that, we ensure that in all the states that a given policy
can visit some of them should have high entropy. Thus, creating a room for exploration from some
states. Thus we also define entropy to be a heuristic to decide which states are worthy of exploration.

To enforce this, we propose matching entropy distribution with exponential distribution. We find that
it alleviates the collapse of entropies to 0, thereby also having states with maximum possible entropy
to encourage exploration. This further encourages the discovery of diverse paths to the goal. Another
key property enables by this objective is a different way to look at the exploration-exploitation
trade-off. Algorithm designer can control the desired distribution to be matched with the entropy’s
distribution. Thus if the desired distribution has more probability mass on high entropies, that would
imply enforcing a more explorative policy, and vice-versa.

Overall, our key contributions are as follows:

1. We first analyze the existing entropy bonus to check how it affects the diversity of the
solutions produced.

2. Based on the findings, we propose loss to match entropy distribution to a prior distribution,
which in our case in exponential distribution.

3. We thoroughly analyze the baseline and our proposed loss quantitatively and qualitatively,
showing the diverse solutions obtained by our approach.

2 Related Work

In model-free reinforcement learning, exploration-exploitation balancing is important because of lack
of a world model. PPO encourages exploration using entropy bonus. The usage of maximum entropy
in reinforcement learning was proposed in Ziebart et al. (2008); Fox et al. (2016); Haarnoja et al.
(2017); Rawlik et al. (2012); Toussaint (2009). Maximum entropy objective modifies reinforcement
learning (RL) objective to incorporate exploration along with reward maximization. As a result, this
helps to escape the agent if it follows a deceptive path of rewards. Thus it helps construction of
policies that are robust to such reward functions.

On another end, search-based algorithms such as GoExplore Ecoffet et al. (2019) rely more on the
exploration to find at least one solution to the task. While exploring it forms a model of the world,
which is used to teleport the agent to a promising state to explore from. GoExplore introduces
heuristics to decide what are the promising states to explore from, which are based on the number of
times a state is visited, or how recently a state statistic has been updated.

If we want to explore effectively in PPO to find diverse solutions, we would want to decide which
states are promising to explore from. Since entropy has shown that trying a different route in PPO
which eventually leads to success, we hypothesize that entropy could be repurposed as a heuristic to
decide the promising states in PPO to explore from.

3 Method

3.1 Background

Proximal Policy Optimization (PPO): PPO introduces a clipped surrogate objective as described in
Eq. 1. The algorithm operates by first collecting data using rollout policy πθold , which is the most
recent checkpoint of the policy. It then updates the policy πθ with PPO objective as we describe
next, while keeping in mind to not to exceed a deviation margin from the rollout policy. Finally, after
performing enough number of updates, πθold is updated to be πθ, and the training repeats.
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The PPO objective as following main properties: a) the ratio rt (eq. 2) measures the relative sharpening
of the probability associated with an action. b) Clipping: One aspect of PPO is that it prevents the
policy πθ from diverging from the rollout policy πθold . ϵ control the divergence of the ratio of action
probabilities. c) Entropy: Entropy maximization objective incentivizes trying out of different actions,
balanced by weight w1. d) KL Divergence: prevents divergence of the current action distributions
πθ(·|st) and action distribution at the rollout πθold(·|st). Finally, PPO objective is to maximize the
combined objective as described in eq. 5.

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(1)

where

rt(θ) =
πθ(at|st)
πθold(at|st)

(2)

H(θ) = −Eat [log πθ(at|st)] (3)

KL(θ) = Et [KL (πθold(·|st) || πθ(·|st))] (4)

LPPO(θ, γ) = LCLIP(θ) + w1H(θ)− w2KL(θ)− w3LVF(γ) (5)

In the PPO framework, we first study the behavior of entropy bonus to understand how it helps in
escaping local minima to eventually find a solution (Sec. 3.2). Then we study the distribution of the
entropies and how it prevents the algorithm from exploring further to find newer solutions (Sec. ??).
Finally, we propose exponential exploration objective, an alternative to entropy bonus, which allows
for continual exploration and finding new solutions (Sec. zz).

3.2 Escaping local minima

Problem of local minima: PPO objective, without entropy bonus, optimizes only to sharpen action
distribution. This objective is more biased towards exploitation as it ensures that the policy does not
take any sub-optimal action. As we observe in the Fig. 1, the policy suggested various actions that
progressed the agent towards the goal. In their initial stages of the training, the policy starts with
random action distribution. Upon encountering an obstacle where it got stuck (right side, EntCoeff 0
in Fig. 1), it was able to escape it because of higher entropy in the initial stages.

After escaping the minima, policy was eventually able to discover a different path (straight path)
after some updates. But again got stuck at a different obstacle. As entropy continues to decrease, by
this update the policy could insert any random action which could have helped in escaping this local
minima.

Escaping with entropy bonus: As can be seen in Fig. 1, as the entropy coefficient (EntCoeff) is
increased the policy is more capable of escaping local minima. For eg. at EntCoeff=5× 10−4, the
agent got stuck at multiple local minima during its course of training (multiple darker colored paths),
but eventually found solutions to the goal. Further increasing the EntCoeff to 1× 10−3, the policy
got stuck at only one local minima before reaching the goal. Finally, at very high EntCoeff such at
8× 10−3, the agent spends more time in taking random actions rather than progressing towards the
goal. We also see this trend in the Fig. 2.

Here we see two extrema of entropy bonus. On one hand, if weighed too low it can cannot escape
the minima, or can get stuck at multiple local minima. At high weightage, it never progresses to
the solution. This leads to an interesting observation that we would want high entropy as a rescue
whenever the agent gets stuck, but not necessarily at every state. Which is contrary to the entropy
bonus objective which tries to maximize entropy at every state.

3.3 Evaluation of Entropy Distribution

To further evaluate the entropy, we seek to answer the question if training longer with entropy bonus
makes the policy explore a diverse set of solutions. We observe that once PPO finds a solution,
it continues to perturb it if we further continue to train it. The degree of perturbation varies wrt
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EntCoeff:  0        5e-4            1e-3         8e-3

Figure 1: Policy behavior at different Entropy coefficient values: Green block is where the agent
spawns. Blue block is the goal block. redRed are the lava obstacles that the agent has to avoid. We
show here paths taken by the agent during the course of training. darker colored paths are taken
earlier in the training, and vice-versa. At lower entropies coefficients (EntCoeff) the agent gets stuck
while focussing on exploitation (EntCoeff 0). At higher EntCoeff the agent explores widely instead
progressing towards the goal. The sweet spots lie in the middle which balances exploration and
exploitation.

Figure 2: Number of bins explored is a proxy for exploration. Low and high entropy coefficients lead
to higher exploration before finding a solution. But these explorations contribute to escaping from
local minima.

the entropy coefficient. For eg. solutions at EntCoeff=0 are perturbed lesser as compared to the
EntCoeff=16× 10−3.

This result can be correlated with the entropy distribution. Here, we compute entropy at each state
along the paths taken by the agent with final trained policy. The entropies are collapsed near 0. As the
entropy coefficient is increased, we make two observations: the mean of entropy distribution shifts
and b) larger values of entropy start showing some representation. However, these values are not
close to the maximum entropy possible in this setup. which is 4.56. If some states would have higher
entropies, it could meant that the algorithm still has the scope to explore and find diverse solutions.
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(a) Entropy distribution at different entropy coeffi-
cients (EntCoeff).

EntCoeff:  0                       16e-3

(b) Perturbations of solution paths upon longer
training.

Figure 3: (a) Upon training PPO for long, the entropy distrubution collapses. Despite of EntCoeff. (b)
This is evident in the agent’s paths which different but essentially perturbed versions of each other

3.4 Exponential Entropy Distribution

As we establish the need for states with higher entropy values in order for PPO to produce diverse
solutions, we seek to introduce a prior in the enrtropy distribution. Observing the waning of the
counts for higher entropy values, we seek to fit an exponential distribution to the entropies. This helps
in controlling the counts of low-entropy states and higher entropy states in the entropy distribution,
unlike entropy bonus which does not offer any control over it.

Our proposed entropy objective makes use of moment matching Li et al. (2015) to match the entropy
distribution to the exponential one. We match first k moments of a suitably chosen exponential
distribution p(x) = λexp(−λx).

Let mi be the ith moment of p(x), calculated as mi = E↶∼p(↶)[x
i], i ∈ Z+. These are defined

in a closed-form for exponential distribution. We estimate the respective moments of entropies of
states seen during a rollout as follows. Suppose a rollout Ri sees states sit using a policy πθold for
timesteps t ∈ {1, ..., T}. Entropy at sit is Hi

t as defined in Eq. 3. Empirically, the entropies form

the set H = Hi
t
i=k,t=T

i=0,t=1 . Estimated entropy moments are defined at m̂j =

∑
i,t(H

i
t)

j

kT
. The final

moment matching loss looks as follows:

L(θ) =
l∑

j=1

(mj − m̂j)
2 (6)

4 Experimental Setup

We run our experiments on MadronaEngine Shacklett et al. (2023) setup with PPO. Our environment
is built off obstacle course games inspired from Roblox obbies. The environments have a spawn
block where the agent spawns and a goal block which it has to reach.
Action space of the agent is composed of 4 discrete distributions: 1) Move/not move 2) 8 orientations
(uniformly spaced between 0-360) towards the step relative to the agent 3) turn (no turn, left, or right)
4) jump/no jump. For eg. is action is [1, 2, 2, 0], it means that the agent should move, by first turning
to right, then changing the orientation in counter-clockwise by 90 degrees, and not jump.
Observation Space: Observation space contains vectors correspnding to depth, velocity, agent’s
observation, and flags indicating interaction between agent and environment’s entities such as
obstacles. Network: Actor-Critic of PPO is implemented as a network with shared backbone
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to extract features from observation and then passed through policy head (actor) and value head
(critic). For the moment matching loss, we experiment with first 4 moments with distribution prior as
p(x) = λ exp(−λx), λ = 1

5 Results

Metric: We compare entropy bonus and the proposed exponential moment matching method on
mean Dynamic Time Warping (DTW) distance metric between successful trajectories. We collect 25
successful trajectories across every 1000 iterations during the training (total 10 checkpoints). Then
we compute DTW distance between each pair of trajectories at every iteration and report its mean
and standard deviation.

5.1 Quantitative Evaluation

Table 1: DTW Distance Analysis: Entropy bonus and Exponential Moment matching Comparison on
successful trajectories

(a) Entropy Coefficient vs DTW Distance

Entropy Coefficient Mean DTW Distance
0.0000 30.335±6.299

0.0005 36.795±12.496

0.0010 23.451±7.337

0.0020 24.823±5.435

0.0040 31.970±6.193

0.0080 36.309±6.788

0.0160 55.253±11.579

(b) Moment matching comparison

Moments Mean DTW Distance
M1 50.684±5.056

M1−2 40.791±4.707

M1−3 42.059±18.874

M1−4 variants

M1−4 (weight 0.25) 104.366±57.755

M1−4 (weight 0.5) 102.450±77.806

M1−4 (weight 1.0) 162.567±52.998

As reported in Tab. 1, mean DTW distances over the course of training in entropy bonus vs. moment
matching objectives. DTW distance measures distance between two signals that are shifted in time.
Higher the DTW distance, better is the diversity. We compute DTW distance by treating agent’s
positions as a 1D signal. We find that the entropy bonus could achieve mean DTW distance till
55.253, with an increase in the distance as the EntCoeff is increased. However also note that at
very high EntCoeff, the convergence to the solution is slower. Compared to entropy bonus, moment
matching objective achieves superior diversity as measured by the DTW distance, achieving a mean
distance of 162.567, which 194% relative incraese against the best entropy bonus for diversity.

Here we also ablate on the different moments. Firstly, we observe in Tab. 1b that first 3 moments have
similar performance as the entropy bonus on the DTW metric. This can also be verified qualitatively
with Fig. 4. We also see, in Fig. 4, that higher entropies count increases as more moments are added.

In Tab. 2 we measure all the moment losses as evaluation metric as we add on new moments in the
objective, starting with M1. This is done to qualitatively measure the closeness to the exponential
distributional prior that we wanted to achieve. We find a steady decrease in losses as new moments
are added, with minimum loss when all 4 moments are present.

Moments used M1 loss M2 loss M3 loss M4 loss
M1 0.0929 2.1551 30.6824 553.6380
M1−2 0.3083 1.8003 20.2531 407.2031
M1−3 0.4828 1.8186 16.7182 304.6855
M1−4 0.0793 1.1228 11.6334 205.9728

Table 2: Ablation of moments used for moment matching objective
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M1 M1-2 M1-3 M1-4

Figure 4: Learnt entropy distributions with different moment matching losses.

M1 M1-2 M1-3 M1-4

Figure 5: Visualization of agent trajectories at different moment matching objectives.

5.2 Qualitative Analysis

We report the qualitative results in Fig. 4. We see that as we include more moments in the loss
objective, the distribution gets closer to the exponential distribution. This is reflected qualitatively
in the Fig. 4. Using all 4 moments shifted the Insight Using lesser moments keeps the trajectories
together whereas using more moments lets the trajectories go waywards. However, this is a different
pattern of randomness than the one observed at higher EntCoeff in Fig. 1. Here the agent takes
multiple well-defined paths but some do not make to the goal. All the paths are diverse from each
other. These paths are well-defined due to expoenential distribution favouring low entropies while
still having representation for the higher entropies.

6 Discussion

As reported so far, our proposed loss achieves more diverse solutions when combined with PPO as
compared against vanilla entropy bonus. Using a distributional prior, such as exponential in our case,
gives a control in algorithm designer’s hands where they can control exploration and exploitation at a
finer level by playing with the desired distribution. It is finer because in case of the entropy bonus,
the control is using only the entropy coefficient, whereas in case of entropy distribution matching we
can control the probability mass over low/high entropies. More mass on lower entropies would mean
an exploitative policy and vice versa. The choice of the prior distribution also depends on domain and
the phase of training. We observed that enforcing our loss at initial stages of training does not allow
it to explore, and therefore we apply our loss only if mean entropy of a rollout is below 66.66%-ile of
maximum entropy.
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7 Conclusion

In this project, our goal was to diversify the successful paths explored by PPO during its training.
We started with an analysis of existing PPO obejctive, specifically that of the entropy bonus which
encourages the exploration. We found that exploration objective helps in getting out of local minima
while the agent searches its way to the goal but it does not find diverse paths to the goal. We
hypothesized that a cause of this could be entropy collapse, which gets near-zero entropy for all the
paths to the goal. To fix this, we proposed to fit the entropy distribution to exponential distribution
using moment matching, so that some states get higher entropy values to facilitate exploration. We
found that this results in exploration of diverse trajactories compared to the baseline of entropy bonus.
We analyzed the effect of moments used to construct the loss, and found that at sufficiently higher
moments the method gives desired results. Introduccing distributional prior for entropy distribution
open new avenues to control exploration-exploitation trade-off to the algorithm deisgner by with a
choice of prior.

Changes from Proposal Original Hypothesis: Initially we planned to characterize the exploration
strategy followed by PPO and SAC. Then, we aimed to transfer the exploration strategies between
them.
Revised Hypothesis: We retain the spirit of the hypothesis to characterize the exploration, but limit
ourselves to analyzing PPO’s exploration in depth. after characterizing we experimentd with new
loss to control entropy.
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